Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
J Cell Biol ; 221(6)2022 06 06.
Article in English | MEDLINE | ID: covidwho-1806200

ABSTRACT

The endolysosome system plays central roles in both autophagic degradation and secretory pathways, including the release of extracellular vesicles and particles (EVPs). Although previous work reveals important interconnections between autophagy and EVP-mediated secretion, our understanding of these secretory events during endolysosome inhibition remains incomplete. Here, we delineate a secretory autophagy pathway upregulated in response to endolysosomal inhibition, which mediates EVP-associated release of autophagic cargo receptors, including p62/SQSTM1. This secretion is highly regulated and dependent on multiple ATGs required for autophagosome formation, as well as the small GTPase Rab27a. Furthermore, disrupting autophagosome maturation, either via genetic inhibition of autophagosome-to-autolysosome fusion or expression of SARS-CoV-2 ORF3a, is sufficient to induce EVP secretion of autophagy cargo receptors. Finally, ATG-dependent EVP secretion buffers against the intracellular accumulation of autophagy cargo receptors when classical autophagic degradation is impaired. Thus, we propose secretory autophagy via EVPs functions as an alternate route to clear sequestered material and maintain proteostasis during endolysosomal dysfunction or impaired autophagosome maturation.


Subject(s)
Autophagy , Extracellular Vesicles , Lysosomes , Proteostasis , Autophagosomes/metabolism , Extracellular Vesicles/metabolism , Humans , Lysosomes/metabolism , SARS-CoV-2 , Sequestosome-1 Protein , Viroporin Proteins , rab27 GTP-Binding Proteins
2.
Adv Exp Med Biol ; 1352: 125-147, 2021.
Article in English | MEDLINE | ID: covidwho-1669700

ABSTRACT

INTRODUCTION: The recent outbreak of coronavirus infection by SARS-CoV-2 that started from the Wuhan Province of China in 2019 has spread to most parts of the world infecting millions of people. Although the case fatality rate of SARS-CoV-2 infection is less than the previous epidemics by other closely related coronaviruses, due to its high infectivity, the total number of SARS-CoV-2 infection-associated disease, called Covid-19, is a matter of global concern. Despite drastic preventive measures, the number of Covid-19 cases are steadily increasing, and the future course of this pandemic is highly unpredictable. The most concerning fact about Covid-19 is the absence of specific and effective preventive or therapeutic agents against the disease. Finding an immediate intervention against Covid-19 is the need of the hour. In this chapter, we have discussed the role of different branches of the cellular proteostasis network, represented by Hsp70-Hsp40 chaperone system, Ubiquitin-Proteasome System (UPS), autophagy, and endoplasmic reticulum-Unfolded Protein Response (ER-UPR) pathway in the pathogenesis of coronavirus infections and in the host antiviral defense mechanisms. RESULTS: Based on scientific literature, we present that pharmacological manipulation of proteostasis network can alter the fate of coronavirus infections and may help to prevent the resulting pathologies like Covid-19.


Subject(s)
COVID-19 , Humans , Pandemics , Proteostasis , SARS-CoV-2 , Unfolded Protein Response
3.
Nat Struct Mol Biol ; 28(7): 614-625, 2021 07.
Article in English | MEDLINE | ID: covidwho-1550333

ABSTRACT

p97 processes ubiquitinated substrates and plays a central role in cellular protein homeostasis. Here, we report a series of cryo-EM structures of the substrate-engaged human p97 complex with resolutions ranging from 2.9 to 3.8 Å that captured 'power-stroke'-like motions of both the D1 and D2 ATPase rings of p97. A key feature of these structures is the critical conformational changes of the intersubunit signaling (ISS) motifs, which tighten the binding of nucleotides and neighboring subunits and contribute to the spiral staircase conformation of the D1 and D2 rings. In addition, we determined the cryo-EM structure of human p97 in complex with NMS-873, a potent p97 inhibitor, at a resolution of 2.4 Å. The structures showed that NMS-873 binds at a cryptic groove in the D2 domain and interacts with the ISS motif, preventing its conformational change and thus blocking substrate translocation allosterically.


Subject(s)
Adenosine Triphosphate/chemistry , Protein Folding , Proteostasis/physiology , Signal Transduction/physiology , Valosin Containing Protein/metabolism , Acetanilides/pharmacology , Animals , Benzothiazoles/pharmacology , Cryoelectron Microscopy , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum-Associated Degradation/physiology , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Nuclear Proteins/metabolism , Proteasome Endopeptidase Complex/metabolism , Protein Conformation , Ubiquitinated Proteins/metabolism , Valosin Containing Protein/antagonists & inhibitors
5.
Cell Stress Chaperones ; 26(5): 859-868, 2021 09.
Article in English | MEDLINE | ID: covidwho-1353732

ABSTRACT

Vaccinations are widely credited with reducing death rates from COVID-19, but the underlying host-viral mechanisms/interactions for morbidity and mortality of SARS-CoV-2 infection remain poorly understood. Acute respiratory distress syndrome (ARDS) describes the severe lung injury, which is pathologically associated with alveolar damage, inflammation, non-cardiogenic edema, and hyaline membrane formation. Because proteostatic pathways play central roles in cellular protection, immune modulation, protein degradation, and tissue repair, we examined the pathological features for the unfolded protein response (UPR) using the surrogate biomarker glucose-regulated protein 78 (GRP78) and co-receptor for SARS-CoV-2. At autopsy, immunostaining of COVID-19 lungs showed highly elevated expression of GRP78 in both pneumocytes and macrophages compared with that of non-COVID control lungs. GRP78 expression was detected in both SARS-CoV-2-infected and un-infected pneumocytes as determined by multiplexed immunostaining for nucleocapsid protein. In macrophages, immunohistochemical staining for GRP78 from deceased COVID-19 patients was increased but overlapped with GRP78 expression taken from surgical resections of non-COVID-19 controls. In contrast, the robust in situ GRP78 immunostaining of pneumocytes from COVID-19 autopsies exhibited no overlap and was independent of age, race/ethnicity, and gender compared with that from non-COVID-19 controls. Our findings bring new insights for stress-response pathways involving the proteostatic network implicated for host resilience and suggest that targeting of GRP78 expression with existing therapeutics might afford an alternative therapeutic strategy to modulate host-viral interactions during SARS-CoV-2 infections.


Subject(s)
Alveolar Epithelial Cells/metabolism , COVID-19/metabolism , Endoplasmic Reticulum Stress , Heat-Shock Proteins/analysis , Receptors, Coronavirus/analysis , SARS-CoV-2/pathogenicity , Adult , Aged , Aged, 80 and over , Alveolar Epithelial Cells/pathology , Alveolar Epithelial Cells/virology , Autopsy , COVID-19/mortality , COVID-19/pathology , COVID-19/virology , Case-Control Studies , Endoplasmic Reticulum Chaperone BiP , Female , Host-Pathogen Interactions , Humans , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/virology , Male , Middle Aged , Proteostasis , Up-Regulation , Young Adult
6.
Protein Sci ; 30(7): 1277-1293, 2021 07.
Article in English | MEDLINE | ID: covidwho-1172360

ABSTRACT

Proteins function in the crowded cellular environments with high salt concentrations, thus facing tremendous challenges of misfolding/aggregation which represents a pathological hallmark of aging and an increasing spectrum of human diseases. Recently, intrinsically disordered regions (IDRs) were recognized to drive liquid-liquid phase separation (LLPS), a common principle for organizing cellular membraneless organelles (MLOs). ATP, the universal energy currency for all living cells, mysteriously has concentrations of 2-12 mM, much higher than required for its previously-known functions. Only recently, ATP was decoded to behave as a biological hydrotrope to inhibit protein LLPS and aggregation at mM. We further revealed that ATP also acts as a bivalent binder, which not only biphasically modulates LLPS driven by IDRs of human and viral proteins, but also bind to the conserved nucleic-acid-binding surfaces of the folded proteins. Most unexpectedly, ATP appears to act as a hydration mediator to antagonize the crowding-induced destabilization as well as to enhance folding of proteins without significant binding. Here, this review focuses on summarizing the results of these biophysical studies and discussing their implications in an evolutionary context. By linking triphosphate with unique hydration property to adenosine, ATP appears to couple the ability for establishing hydrophobic, π-π, π-cation and electrostatic interactions to the capacity in mediating hydration of proteins, which is at the heart of folding, dynamics, stability, phase separation and aggregation. Consequently, ATP acquired a category of functions at ~mM to energy-independently control protein homeostasis with diverse mechanisms, thus implying a link between cellular ATP concentrations and protein-aggregation diseases.


Subject(s)
Adenosine Triphosphate/metabolism , Homeostasis , Protein Folding , Proteostasis , Animals , Humans , Protein Domains
7.
Cell Stress Chaperones ; 26(2): 289-295, 2021 03.
Article in English | MEDLINE | ID: covidwho-1070950

ABSTRACT

Members of the Cell Stress Society International (CSSI), Patricija van Oosten-Hawle (University of Leeds, UK), Mehdi Mollapour (SUNY Upstate Medical University, USA), Andrew Truman (University of North Carolina at Charlotte, USA) organized a new virtual meeting format which took place on November 5-6, 2020. The goal of this congress was to provide an international platform for scientists to exchange data and ideas among the Cell Stress and Chaperones community during the Covid-19 pandemic. Here we will highlight the summary of the meeting and acknowledge those who were honored by the CSSI.


Subject(s)
Heat-Shock Proteins/metabolism , Molecular Chaperones/metabolism , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/genetics , HSP90 Heat-Shock Proteins/metabolism , Heat-Shock Proteins/genetics , Humans , Molecular Chaperones/genetics , Proteostasis/genetics , Proteostasis/physiology
8.
Aging Cell ; 20(2): e13316, 2021 02.
Article in English | MEDLINE | ID: covidwho-1057943

ABSTRACT

The ageing of the global population brings about unprecedented challenges. Chronic age-related diseases in an increasing number of people represent an enormous burden for health and social care. The immune system deteriorates during ageing and contributes to many of these age-associated diseases due to its pivotal role in pathogen clearance, tissue homeostasis and maintenance. Moreover, in order to develop treatments for COVID-19, we urgently need to acquire more knowledge about the aged immune system, as older adults are disproportionally and more severely affected. Changes with age lead to impaired responses to infections, malignancies and vaccination, and are accompanied by chronic, low-degree inflammation, which together is termed immunosenescence. However, the molecular and cellular mechanisms that underlie immunosenescence, termed immune cell senescence, are mostly unknown. Cellular senescence, characterised by an irreversible cell cycle arrest, is thought to be the cause of tissue and organismal ageing. Thus, better understanding of cellular senescence in immune populations at single-cell level may provide us with insight into how immune cell senescence develops over the life time of an individual. In this review, we will briefly introduce the phenotypic characterisation of aged innate and adaptive immune cells, which also contributes to overall immunosenescence, including subsets and function. Next, we will focus on the different hallmarks of cellular senescence and cellular ageing, and the detection techniques most suitable for immune cells. Applying these techniques will deepen our understanding of immune cell senescence and to discover potential druggable pathways, which can be modulated to reverse immune ageing.


Subject(s)
Cellular Senescence , Immunosenescence , Leukocytes/physiology , Animals , Biomarkers/metabolism , Humans , Oxidative Stress , Proteostasis
9.
Cells ; 10(1)2020 12 24.
Article in English | MEDLINE | ID: covidwho-1000241

ABSTRACT

Protein homeostasis is maintained by removing misfolded, damaged, or excess proteins and damaged organelles from the cell by three major pathways; the ubiquitin-proteasome system, the autophagy-lysosomal pathway, and the endo-lysosomal pathway. The requirement for ubiquitin provides a link between all three pathways. Sorting nexins are a highly conserved and diverse family of membrane-associated proteins that not only traffic proteins throughout the cells but also provide a second common thread between protein homeostasis pathways. In this review, we will discuss the connections between sorting nexins, ubiquitin, and the interconnected roles they play in maintaining protein quality control mechanisms. Underlying their importance, genetic defects in sorting nexins are linked with a variety of human diseases including neurodegenerative, cardiovascular diseases, viral infections, and cancer. This serves to emphasize the critical roles sorting nexins play in many aspects of cellular function.


Subject(s)
Endosomes/metabolism , Lysosomes/metabolism , Proteasome Endopeptidase Complex/metabolism , Proteostasis , Sorting Nexins , Ubiquitin/metabolism , Autophagy , Cardiovascular Diseases/metabolism , Humans , Neoplasms/metabolism , Neurodegenerative Diseases/metabolism , Sorting Nexins/genetics , Sorting Nexins/physiology , Virus Diseases/metabolism , Yeasts
10.
Viruses ; 12(12)2020 12 10.
Article in English | MEDLINE | ID: covidwho-969583

ABSTRACT

Recent RNA virus outbreaks such as Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and Ebola virus (EBOV) have caused worldwide health emergencies highlighting the urgent need for new antiviral strategies. Targeting host cell pathways supporting viral replication is an attractive approach for development of antiviral compounds, especially with new, unexplored viruses where knowledge of virus biology is limited. Here, we present a strategy to identify host-targeted small molecule inhibitors using an image-based phenotypic antiviral screening assay followed by extensive target identification efforts revealing altered cellular pathways upon antiviral compound treatment. The newly discovered antiviral compounds showed broad-range antiviral activity against pathogenic RNA viruses such as SARS-CoV-2, EBOV and Crimean-Congo hemorrhagic fever virus (CCHFV). Target identification of the antiviral compounds by thermal protein profiling revealed major effects on proteostasis pathways and disturbance in interactions between cellular HSP70 complex and viral proteins, illustrating the supportive role of HSP70 on many RNA viruses across virus families. Collectively, this strategy identifies new small molecule inhibitors with broad antiviral activity against pathogenic RNA viruses, but also uncovers novel virus biology urgently needed for design of new antiviral therapies.


Subject(s)
Antiviral Agents/pharmacology , Host-Pathogen Interactions/drug effects , RNA Viruses/drug effects , Virus Replication/drug effects , Animals , Cell Line , Ebolavirus/drug effects , Ebolavirus/physiology , HSP70 Heat-Shock Proteins/metabolism , Hemorrhagic Fever Virus, Crimean-Congo/drug effects , Hemorrhagic Fever Virus, Crimean-Congo/physiology , Humans , Protein Binding/drug effects , Protein Stability , Proteome/drug effects , Proteostasis/drug effects , RNA Virus Infections/metabolism , RNA Virus Infections/virology , RNA Viruses/physiology , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Small Molecule Libraries/pharmacology , Viral Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL